Explain Like I’m Five: The Non-Nerdy Guide to Artificial Intelligence in Order to Cash

The importance of data to make for decision making by a software can be observed when you try searching for directions on Google Maps in off-line mode. In the absence of live data, it only proposes a list of possible routes but can’t tell you which is your best option now. The AI-engine of Google Maps uses live information collected through Internet to make decisions which simplify your life Can Artificial Intelligence (AI) in Order to Cash (OTC) also make such useful predictions when equipped with the right data? After all, there is no dearth of data on customer behavior, payment patterns and ordering history, etc. Could ML start making sense of all this information to make useful predictions such as likely delay in payments, the validity of customer claims, missing remittance values or increased customer risk? The answer is YES. Join Gwyn Roberts, Vice President, EMEA, as he shares his insights and experience to gain a comprehensive yet fundamental understanding of Machine Learning in order to cash.

Save Time and Money on Order-to-Cash Operations